Transforming an Atmospheric Science Undergraduate Lab
Integrating Skywatch Observatory into ATOC 1070

Kim Trenbath, Scott Kittelman, Peter Pilewskie and Katja Friedrich
Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder

Motivation

Fundamental Idea:
- Introduce atmospheric science instrumentation to students through curriculum that is inspiring and effective in teaching students basic fundamentals of radiation and precipitation.

Project Goals:
- Establish a rooftop observatory to measure and archive radiometric and precipitation quantities: atoc.skywatch.edu
- Provide web-based public access to real-time and archived data.
- Develop local instrument-based curriculum for undergraduate atmospheric science classes.
- Evaluate curriculum using pre- and post-questionnaires.
- Integrate curriculum into undergraduate weather and atmosphere course sequence.

Methodology

Four Phases of Curriculum Development:
1. Development Phase (Nov, 09 – Mar, 10)
 - Team kick-off meeting
 - Professors develop the Essential Questions, Learning Goals, and General Lab Exercise Outline
 - Graduate students develop the pre and post assessment
 - Graduate students lab exercises
 - Professors revise professors’ online and focus exercises.
2. Pilot Phase (Mar, 10 – Apr, 10)
 - Radiation Lab
 - Instructor 1
 - Instructor 2
 - Instructor 3
 - Instructor 4
 - Precipitation Lab
 - Instructor 5
 - Instructor 6
 - Team reviews professors’ online and focus exercises.
 - Graduate students lab exercises
 - Professors revise and/or approve the team’s additions/ revisions.
 - Final pretest assessment
 - Final laboratory exercise
3. Revision Phase (Apr, 10 – Aug, 10)
 - Team revised new labs based on instructor’s feedback
 - Overhauled ATOC 1070 syllabus to accommodate new curriculum.
 - Pilot radiation lab in summer 2010 sections (33 students).
4. Final Implementation (Aug, 10)
 - Incorporated finalized curriculum into fall 2010 syllabus.
 - Taught to 247 students in 14 sections during fall 2010 semester.

Curriculum Examples

Radiation Lab

- Incorporates guided inquiry and local radiation measurement instruments, and Skywatch Observatory data.
- Part 1: Instructor demonstrates impacts of radiation sources on pyranometer and pygermeters.
- Students experiment with instruments in classroom and infer the wavelengths that each instrument measures.
- Part 2: Students examine pyranometers, pygermeters, ceilometer, and video archive data corresponding with various weather.
- Students determine the impact of time of day and clouds on radiation.
- Part 3: Students calculate the emissive temperature of the atmosphere and effective emission altitude.

Lab Conclusion: Students extrapolate the big picture from what they learned in the lab.

Precipitation Lab

- Incorporates disdrometer, radar reflectivity and rainfall data into streamlined laboratory orientation lab.
- Students spray water through disdrometer to analyze drop size and velocity data.
- Student plot radar reflectivity and rainfall rate data in Microsoft Excel, a program they use throughout the lab.

Evaluation Methods

- Assessments developed based on common learning goals between the old and new labs and contain identical content questions.
- Administered pre-assessment 1 week prior to lab.
- Pilot instructors (2) taught “New” (Transformed) Lab to one section and “Old” (Traditional) Lab to second session.
- Administered post-assessment the class period after the lab.
- Compared students who completed both assessments.
- Results include both pilot instructors: new lab - 25 students, old lab - 24 students.

Discussion

- Team successfully developed undergraduate laboratory sessions that incorporated guided inquiry, real data, and actual radiation and precipitation instruments.
- Team used curriculum to partially transform ATOC 1070 – Weather and Atmosphere Laboratory.
- Students’ average assessment scores increased after completing New Radiation Lab, but far from highest possible score.
- New Radiation Lab students’ score increase higher than Old Lab students’, but their pre- and post-assessment averages were lower.
- New Radiation Lab students’ average increase was due to moderate improvements from Low and Medium students. (See orange highlight in below tables.)
- High classification New Radiation Lab students’ scores decreased. (See yellow highlight in below tables.)

Results: Radiation Lab Evaluation

<table>
<thead>
<tr>
<th>Score Change Categories</th>
<th>Moderate Improvement</th>
<th>Small Improvement</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab</td>
<td>Pre-assessment</td>
<td>Post-assessment</td>
<td>Change</td>
</tr>
<tr>
<td>Old Lab</td>
<td>7.2</td>
<td>7.9</td>
<td>0.7</td>
</tr>
<tr>
<td>New Lab</td>
<td>7.1</td>
<td>7.4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Future Work

- Analyze precipitation assessment data.
- Investigate why radiation assessment scores changed.
- Analyze students’ rating of the Labs.
- Continue to use similar curriculum development techniques and the Skywatch Laboratory to revamp undergraduate curriculum.

Acknowledgements

- Special thank-you to participants from the ATOC community, especially Dr. Richard Kern, Rachel Humphrey, Samuel LeBlanc, Katherine McCaffrey, Alice DuVivier, Ethan Peck, Jesse Nusbaum, Brian Vanderwende, and Bemt Duncan. They contributed their wonderful time and energy. Without them, our curriculum would not exist.
- Thank you to the National Science Foundation (DUE 0837388) and ATOC Department for funding this research.